Contribution from the Department of Chemistry, Imperial College of Science and Technology, London, SW7, United Kingdom

Spectroscopic Studies of Substituted Imidazole Complexes. III. 2-Methylbenzimidazole Complexes of Divalent Cobalt, Nickel, Copper, and Zinc

D. M. L. Goodgame, M. Goodgame, and G. W. Rayner Canham

Received August 9, 1971

The preparations are reported of the 2-methylbenzimidazole (= L) complexes ML_2X_2 ($M = Co$, Ni, Cu, *or Zn, X = Cl, Br, or NO₃) and* ML_2I_2 *(M = Co, Ni, or Zn). The results of electronic and low-frequency vibrational spectral and magnetic susceptibility measurements are presented and are used to assign coordination geometries. E.p.r. data are also given for the copper complexes.*

Introduction

Benzimidazoles with a wide variety of 2-substituents have interesting and useful biological properties. For ave interesting and useful biological properties. For example, 2-trifluoromethylbenzimidazole derivatives have been patented as herbicides,¹ and $2-\alpha$ -hydroxybenzylbenzimidazole has anti-virus activity.² As part of a study of the coordination behaviour of molecules of this general type we have investigated metal complexes of 2-methylbenzimidazole $(= L)$, since it is both useful itself as a herbicide,³ and is also the simplest member of the class. We report here the results for divalent cobalt, nickel, copper, and zinc.

Experimental Section

Preparation of Complexes. All complexes were μ reparation of complexes. All complexes were f_{ref} and f_{ref} of f_{ref} and f_{ref} were good.

CoL:Xr and ZnL3x, (X = Cl, Br, or I). Solutions $\mathcal{L}^{0}L_{2}^{c}\Lambda_{2}$ and $\mathcal{L}^{n}L_{2}\Lambda_{2}(\Lambda=U, B^{r}, \theta^{r}I)$. Solutions of the metal salt and 2-methylbenzimidazole in acetone were mixed in 1:2 mole ratio. The mixture was evaporated to small bulk and a little benzene was added. The crystals formed were filtered off, washed with benzene, and recrystallised from acetone/carbon tetrachloride.

CULZXS (X = Cl, Br, or NO& Solutions of the $\text{Cu}L_2\Lambda_2 \text{ (}\Lambda = \text{Cl}, \text{ pr}, \text{ or } \text{PQ}$. Solutions of the copper salt and 2-methylbenzimidazole in ethanol were mixed in $1:2$ mole ratio. On standing, crystalline solids were formed, and were filtered off, and washed with ethanol and ether.

ML2(N0& (M = Co, Ni, or Zn). The metal nitrate $M_{22}(NQ)/2$ ($M = U$, Nl , QLl , Ll). The field finitate was dissolved in $2,2$ -dimethoxypropane, and a $2:1$ mole ratio of 2-methylbenzimidazole was added. The $\frac{1}{100}$ and $\frac{1}{100}$ are evaporated to small volume and was al- μ ution was evaporated to sinan volume and was arlowed to crystallise (addition of benzene was necessary for the zinc complex). The compounds were recrystallised from acetone/carbon tetrachloride, and were washed with carbon tetrachloride.

NiL2Xs (X = Cl, Br, or I). These were prepared α as α as α as α as α

Physical Measurements. These were made as des nysical measurer
Filhod measicualis

Results and Discussion

All the compounds isolated have the stoichiometry ML_2X_2 ; the steric requirements of 2-methylbenzimidazole presumably preclude the formation of complexes with a higher ligand: motel ratio. With the cobalt halwith a higher ligand: metal ratio. With the cobalt halides, complexes of essentially tetrahedral geometry are formed. Their magnetic moments and intense reflectance spectra (Table I) agree well with those expected for this stereochemistry, with Δ values of 4000 (X = I) to 4500 cm⁻¹ (X = Cl). Δ +300 CH $(A - C)$.
He contributed compound CoL2(NO), has a relatively

Although the compound $\text{COL}_2(\text{IV}_3)_2$ has a relatively low magnetic moment (4.47 B.M. at room temperature) its electronic spectrum does not resemble those of distorted tetrahedral cobalt(II) compounds. It is probably six coordinate, with chelating nitrate groups.

All the $\text{cobalt}(II)$ nitrate complexes which are known, or may be reasonably supposed, to be of this type have rather similar electronic spectra (Table II). In each case, in addition to the strong, broad, or multiple, band in the $17,500-21,500 \text{ cm}^{-1}$ region expected pic, baild in the 17,500-21,500 cm $\frac{1}{2}$ region expected $\frac{1}{2}$ denote $\lim_{x \to a} \frac{f(x) - f(y)}{f(x)}$ is the near infrared region, there is a weak to medium intensity band at on, there is a weak to medium intensity band at $2.000, 14, 500, \text{cm}^{-1}$. The extra position of this extra μ , σ , and depends on the type of neutral figure present, $13,000$ cm 100 cm 100 carried donors and at

⁽¹⁾ See, for example, D.E. Burton, A.H. Lambie, J.C.L. Ludgate, G.T. Newbold, A. Percival, and D.T. Saggers. Nafure. 208. 1166 (1965). (2) A.C. Hollinshead and P.K. Smith, 1. Phnrm. *Exp. Therapeuticus, 123,* **54 (1958). (3) U.S. Borax and Chemical Corp., Brit, pat. 1, 015, 937 (1966).**

⁽⁴⁾ M. Goodgame and M.J. Weeks, J. Chem. Soc. (A) , 1156, (1966).

(5) D.M.L. Goodgame, M. Goodgame, P.J. Hayward, and G.W.

ayner Canham, *Inorg. Chem.*, 7, 2447 (1968).

(6) F.A. Cotton, D.M.L. Goodgame, and R.H. Soderb

^a Spin-forbidden bands above 17,000 cm⁻¹ omitted. b From. ref. 4.

Table II. Electronic spectra of some complexes $CoL_2(NO_3)_2$.

L			v , cm ¹⁻			Ref.
Me ₁ PO Ph _n PO	5660	7800 7580	11,900 11,900	17,850 17,920	19.050 \sim 19.000 sh	b
Ph ₃ AsO	$\sim 6700 \, \text{sh}$	7810	\sim 11,800 sh	17.450	\sim 18.700 sh \sim 20.600 sh	6
benzimidazole	7840	9010	13.790	17,860	\sim 20.000 sh	
2-methylimidazole	7870	9500	14,500		18.600	
1,2-dimethylimidazole	7900	8800	13,400		18.500	
2-methylbenzimidazole	7450	\sim 8700 sh	14.100	18,200	\sim 21.300 sh	\boldsymbol{a}

^a This work

Table III. Vibrational Spectra (400-90 cm⁻¹) of 2-methylbenzimidazole and some of its complexes.

Compound	v_{max} (cm ⁻¹)
L	$324w$, $285m$, \sim $270sh$, $261s$, $197mbr$, $132w$
L (R) ^a	$334w$, $281w$, $123s$.
CoL(NO ₃) ₂	$326m$, $307s$, $285m$, \sim $268sh$, $220m$, $165s$
$NiL2(NO3)2$	332s, 309s, 291s, 262sbr, \sim 240sh, \sim 160s, vbr, \sim 100s, vbr.
$ZnL_2(NO_3)_2$	323w, 307m, 280m, \sim 260sh, \sim 200w, vbr, \sim 170mbr, \sim 100m, vbr,
$CuL2(NO3)2$	343s, 327s, 300s, br, 257m, 185s, 132s, 102m
CuL ₂ Cl ₂	331w, 290m, 276s, 270s, 220w, 181s, 160s,
CuL ₂ Br ₂	343s, 326s, 292s, 240m, 214s, 175s, 124s,

 $a(R)$ indicates Raman Spectrum

pendence of the band position on the ligand field strength and its intensity suggest that the upper level of the transition concerned originates from the 4F free ion term and not from ${}^{2}G$. It is probably a component of v_1 (" $\Gamma_{1g}(F) \rightarrow 4T_{2g}$ in O_h), the pronounced splitting reflecting the very low symmetry in this class of compound, as is further shown by the relatively low magnetic moment.

Pseudotetrahedral structures have been assigned4 to the complexes NiL_2X_2 (X = Cl, Br, or I) on the basis of their electronic spectra and magnetic moments. The ${}^{3}T_{1} \rightarrow {}^{3}T_{2}$ transition (v_{1}) appears as a symmetrical band near 7000 cm^{-1} , and shows no sign of splitting either at low temperature, or, in the case of the chloride, on dilution in the isomorphous zinc complex. However, other components of this transition may be hidden by the ${}^{3}T_{1} \rightarrow {}^{3}A_{2}$ transition, or be below the range of our measurements.

(7) M. Goodgame and F.A. Cotton, J. Amer. Chem. Soc., 84, 1543 1962).

1962).

(8) D.M.L. Goodgame, M. Goodgame and G.W. Rayner Canham,
 norg. Chim. Acta, 3, 399 (1969).

(9) D.M.L. Goodgame, M. Goodgame, and G.W. Rayner Canham,

(9) D.M.L. Goodgame, M. Goodgame, and G.W. Rayner Can

All the copper compounds appear to have distorted six-coordinate structures. They each have a pair of $d-d$ bands at 13,000-18,000 cm⁻¹, plus an intense band at high energy (Table I). This last moves to higher energy in the sequence $Br^- < Cl^- < NO_3^-$, and presumably arises from anion->metal electron transfer.

Vibrational Spectra. For the compounds ML₂- $(NO₃)₂$ (M = Co, Ni, or Zn), the internal vibrations $\sum_{i=1}^{N}$ ($\sum_{i=1}^{N}$ are $\sum_{i=1}^{N}$ or $\sum_{i=1}^{N}$ and $\sum_{i=1}^{N}$ for $\sum_{i=1}^{N}$ for $\sum_{i=1}^{n}$ inc. means group are similar to those found for dine or a substituted pyridine, which were considered the contain chelating nitrate groups, though the posito contain chelating nitrate groups, though the positions of v_1 for our compounds (1475-1490 cm⁻¹) are at the low end of the reported range. For CuL(NO), the v frequency (1440 cm⁻¹) is

 $\frac{1}{\text{det}(1+\text{det}($ distinctly lower than for the cobalt, nickel and zinc compounds and is closer to, though still above, the values quoted¹⁰ for monodentate nitrate groups. Since copper nitrato-complexes usually have v_1 towards

(10) A.B.P. Lever, *Inorg. Chem., 4, 1042 (1965).*

Compound	Ligand Bands	$v(M-L)$	$v(M-X)$	Other Bands
CoL ₂ Cl ₂	326m, 297sh, 280m, 178m	229w. 210w	311s ^a	150s, 130s, 106m
CoL ₂ Br ₂	329m, 321m, 302s, 287m, 279m, 170s	210m	249s, 236s	129s. 100m. br
CoL_2I_2	329m, 299s, 282s, 174w		$(218sh, 208s)$ ^b	120m
NiL_2Cl_2	330sh, 305s, 282m, 177m	211m	$315s$ ^a	167m, 154m, 125m, 109w
NiL ₂ Br ₂	329m, 322m, 304s, 291w, 280m, 174 m	202w	246s, 238m	$128m.$ 100 $m.$ br
NiL ₂ I ₂	330m, 323m, 302s, 283m, 279m, 174w		(226m, 216m, 200m)	153m, 112s
ZnL_2Cl_2	330w, 322w, 303s, 287s, 280w, 176w	197s	a	152s. 125s
(R) c \rightarrow	309w. 290m. 184w			144s. 104m
ZnL_2Br_2	329w, 321w, 297m, 286m, 278w, 170m	189s	229s. 218s	$131m$, $100w$, br
(R) \rightarrow	171m		226m	139s. 98sh
ZnL_2I_2	328m, 323m, 297s, 277s		(195vs, 187s)	160wm, 97m
(R) \mathbf{v}	285w, 167sh			159m. 97m

Table IV. Vibrational Spectra (400-90 cm⁻¹) of Pseudotetrahedral Complexes of 2-methylbenzimidazole

One or more components

			Table V. Observed g-values for some Cu(2-methylbenzimidazole) ₂ X ₂ Complexes	

the low end of the range of the range $\frac{1}{2}$ is seen that the range of the α ne low end of the range," it seems unlikely that these are genuinely monodentate, but that unsymmetrical chelation is present in this complex.

The low-frequency vibrational bands of 2-methylbenzimidazole are given in Table III and those of some of its complexes in Tables III and IV. The igand band at 524 cm generally moves to nigher nergy in the complexes, and is somewhat enhanced in intensity, and the band-system at $261-285$ cm⁻¹ also moves to higher energy. One of the bands in this region may be related to the strong band at 265 cm^{-1} in 2-methylimidazole, which also moves to higher energy on complex formation.⁸ This band is probably due to a bending mode of the H_3C -ring gro-
uping The profusion of ligand bands makes the identifi-

The profusion of ligand bands makes the identification of metal-ligand stretches difficult. However, for the pseudotetrahedral complexes most of the netal-amon stretching frequencies were observed Table TV). There is also a metal-sensitive band, or pair of bands, at 210-230 cm^{-1} for cobalt, 200-226 cm^{-1} for nickel and 187-197 cm^{-1} for zinc, which may have appreciable metal-nitrogen stretching character. This is very close to the region associated with metal-iodine stretching frequencies, and for the iodides it is likely that appreciable interaction occurs between the $v(M-N)$ and $v(M-I)$ modes.

Below 180 cm⁻¹, the spectra are more dependent on the anion than the metal. A band at 170-180 cm⁻¹,

 \mathbf{r} and the 197 cm-' ligand band shifted to \mathbf{r} which may be the 197 cm^{-1} ligand band shifted to lower energy, appears in nearly all of the compounds, while the band at about 130 cm^{-1} has much greater intensity in the complexes. In addition, all the chlorides have a band near 150 cm^{-1} which is absent from the other complexes, except $NL₂I₂$, where it may be due to a Ni-1 stretching mode.

 $E.P.R.$ Spectra. Polycrystalline samples of $CuL₂X₂$ $(X = Cl, Br, or NO₃)$ were studied at both X-band $(\sim 9.3 \text{ GHz})$ and Q-band ($\sim 36.0 \text{ GHz}$) frequencies and the g-values were determined by the method of Kneubühl, 12 (Table V).

In the absence of X-ray structural information the observed g-values cannot be taken as the accurate molecular g-values. However in the case of the nitrate at X-band frequency and all three compounds at Q-band frequency, which provides better resolution, the g_1 absorption is split. This indication of a rhombic distortion for the compounds is in agreement with the conclusions from the infrared spectrum of the nitrate, and, by analogy with the known structure of $Cu(N-methylimidazole)₂Br₂¹³$ with the probable structures of the halide complexes.

Acknowledgments. We thank the Agricultural Re-Acknowledgments. We thank the Agr.

- 11) C.C. Addison and W.B. Simpson, *J. Chem. Soc.*, 598 (1965).
12) F.K. Kneubühl, *J. Chem. Phys.*, 33, 1074 (1960).
-
-